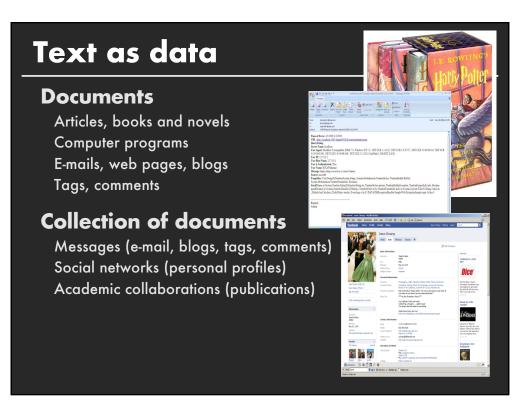
Text Visualization

Maneesh Agrawala

CS 448B: Visualization Fall 2020

1



Announcements

3

Final project

Data analysis/explainer or conduct research

- Data analysis: Analyze dataset in depth & make a visual explainer
- **Research**: Pose problem, Implement creative solution

Deliverables

- Data analysis/explainer: Article with multiple interactive visualizations
- **Research**: Implementation of solution and web-based demo if possible
- Short video (2 min) demoing and explaining the project

Schedule

- Project proposal: Thu 10/29
- Design Review and Feedback: Tue 11/17 & Thu 11/19
- Final code and video: Sat 11/21 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Class Schedule

Guest Lecture Th Nov 12

Jessica Hullman on Visualizing Uncertainty

5

Design Feedback (Next Week)

Signup for a ~10 min slot

Will post signups on Piazza later this week

Plan to give a 5 min presentation (mostly demo) of work so far. We will give oral feedback.

Text Visualization

ŏ

Why visualize text?

Why Visualize Text?

Understanding: get the "gist" of a document

Grouping: cluster for overview or classification

Compare: compare document collections, or inspect evolution of collection over time

Correlate: compare patterns in text to those in other data, e.g., correlate with social network

10

Example: Health Care Reform

Background

Initiatives by President Clinton Overhaul by President Obama

Text data

News articles Speech transcriptions Legal documents

What questions might you want to answer? What visualizations might help?

A Concrete Example

September 10, 2009

TEXT

Obama's Health Care Speech to Congress

Following is the prepared text of President Obama's speech to Congress on the need to overhaul health care in the United States, as released by the White House.

Madame Speaker, Vice President Biden, Members of Congress, and the American people:

When I spoke here last winter, this nation was facing the worst economic crisis since the Great Depression. We were losing an average of 700,000 jobs per month. Credit was frozen. And our financial system was on the verge of collapse.

As any American who is still looking for work or a way to pay their bills will tell you, we are by no means out of the woods. A full and vibrant recovery is many months away. And I will not let up until those Americans who seek jobs can find them; until those businesses that seek capital and credit can thrive; until all responsible homeowners can stay in their homes. That is our ultimate goal. But thanks to the bold and decisive action we have taken since January, I can stand here with confidence and say that we have pulled this economy back from the brink.

I want to thank the members of this body for your efforts and your support in these last several months, and especially those who have taken the difficult votes that have put us on a path to recovery. I also want to thank the American people for their patience and resolve during this trying time for our nation.

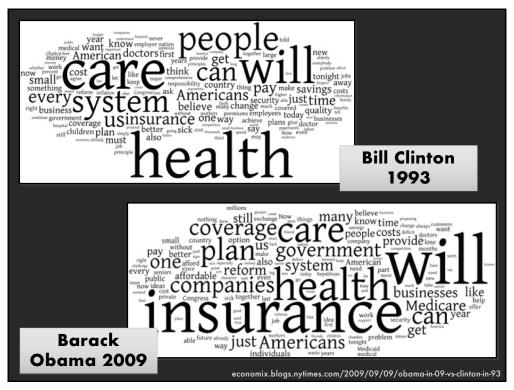
But we did not come here just to clean up crises. We came to build a future. So tonight, I return to speak to all of yo

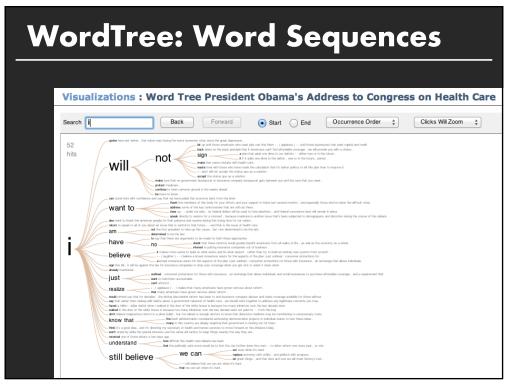
12

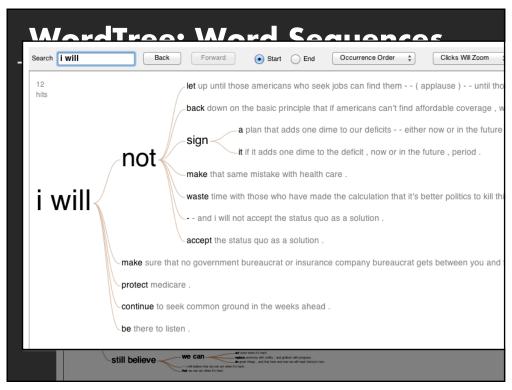
Word/Tag Clouds: Word Count

President Obama's Health Care Speech to Congress

economix.blogs.nytimes.com/2009/09/09/obama-in-09-vs-clinton-in-93







Many (most?) text visualizations do not represent text directly. They represent the output of a **language** model (word counts, word sequences, etc.)

Can you interpret the visualization?

How well does it convey the properties of the model?

Do you trust the model?

How does the model enable us to reason about the text?

Text Visualization Challenges

High Dimensionality

Where possible use text to represent text... ... which terms are the most descriptive?

Context & Semantics

Provide relevant context to aid understanding Show (or provide access to) the source text

Modeling Abstraction

Determine your analysis task
Understand abstraction of your language models
Match analysis task with appropriate tools and models

18

Topics

Text as Data
Visualizing Document Content
Visualizing Conversation
Document Collections

Text as Data

21

Words as nominal data?

High dimensional (10,000+)

More than equality tests

- Correlations: Hong Kong, San Francisco, Bay Area
- Order: April, February, January, June, March, May
- Membership: Tennis, Running, Swimming, Hiking, Piano
- Hierarchy, antonyms & synonyms, entities, ...

Words have meanings and relations

Text Processing Pipeline

Tokenization

Segment text into terms.

Remove stop words? a, an, the, of, to, be

Numbers and symbols? #cardinal, @Stanford, OMG!!!!!!!

Entities? Palo Alto, O'Connor, U.S.A.

23

Text Processing Pipeline

Group together different forms of a word.

Tokenization

Segment text into terms.

Remove stop words? a, an, the, of, to, be

Numbers and symbols? #cardinal, @Stanford, OMG!!!!!!!

Entities? Palo Alto, O'Connor, U.S.A.

Stemming

Porter stemmer? visualization(s), visualize(s), visually -> visual Lemmatization? goes, went, gone -> go

Text Processing Pipeline

Tokenization

Segment text into terms.

Remove stop words? a, an, the, of, to, be

Numbers and symbols? #cardinal, @Stanford, OMG!!!!!!!!
Entities? Palo Alto, O'Connor, U.S.A.

Stemming

Group together different forms of a word.

Porter stemmer? visualization(s), visualize(s), visually -> visual Lemmatization? goes, went, gone -> go

Ordered list of terms

25

The Bag of Words Model

Ignore ordering relationships within the text

A document ≈ vector of term weights

Each term corresponds to a dimension (10,000+)

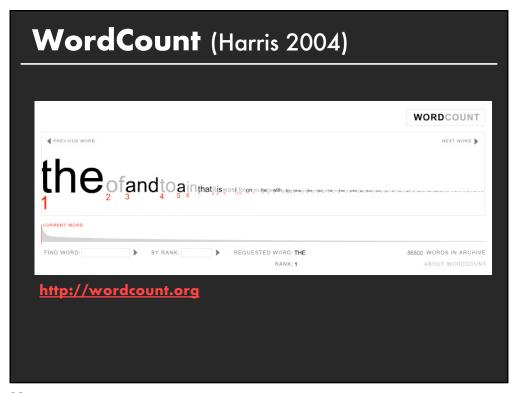
Each value represents the relevance

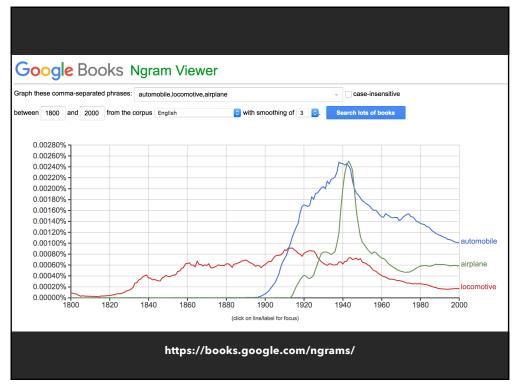
For example, simple term counts

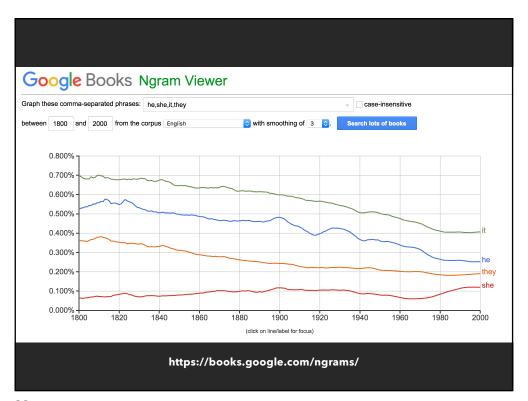
Aggregate into a document x term matrix

Document vector space model

Document x Term matrix Each document is a vector of term weights Simplest weighting is to just count occurrences Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth **Antony Brutus** Caesar Calpurnia Cleopatra mercy worser









Word/Tag Clouds

Strengths

Can help with gisting and initial query formation

Weaknesses

Sub-optimal visual encoding (size not pos. encodes freq.)
Inaccurate size encoding (long words are bigger)
May not facilitate comparison (unstable layout)
Term frequency may not be meaningful
Does not show the structure of the text

Given a text, what are the best descriptive words?

33

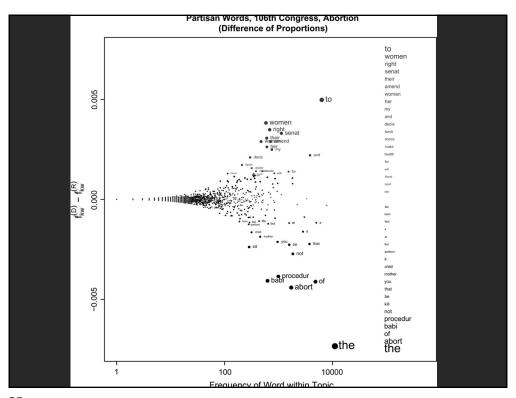
Keyword Weighting

Term Frequency

 $tf_{td} = count(t)$ in d

Can take log frequency: log(1 + tftd)

Can normalize to show proportion: $tf_{td} / \Sigma_t tf_{td}$



Keyword Weighting

Term Frequency

 $tf_{td} = count(t)$ in d

TF.IDF: Term Freq by Inverse Document Freq

 $tf.idf_{td} = log(1 + tf_{td}) \times log(N/df_t)$

 $df_t = \# docs containing t; N = \# of docs$

Limitations of Frequency Statistics

Typically focus on unigrams (single terms)

Often favors frequent (TF) or rare (IDF) terms

Not clear that these provide best description

"Bag of words" ignores additional info.

Grammar / part-of-speech Position within document Recognizable entities

42

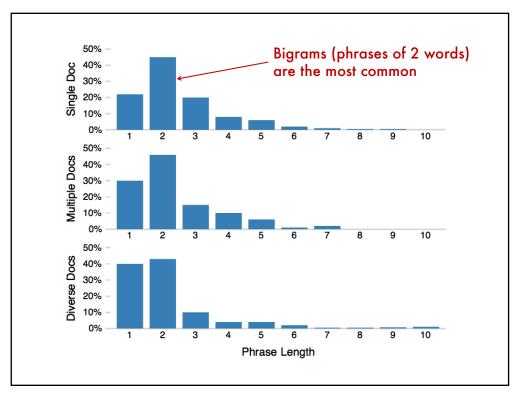
How do people describe text?

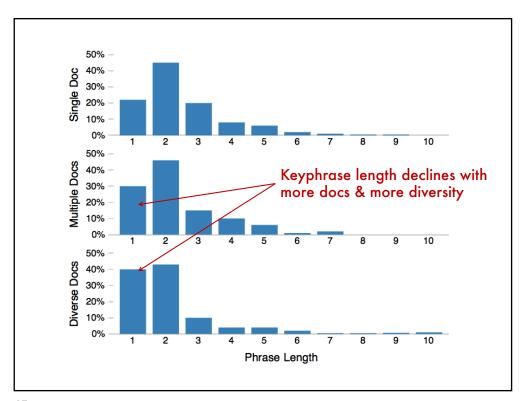
Asked 69 graduate students to read and describe dissertation abstracts

Each given 3 documents in sequence; summarized each using keyphrases, then summarized the 3 together as a whole using keyphrases

Were matched to both familiar and unfamiliar topics; topical diversity within a collection was varied systematically

[Chuang 2012]



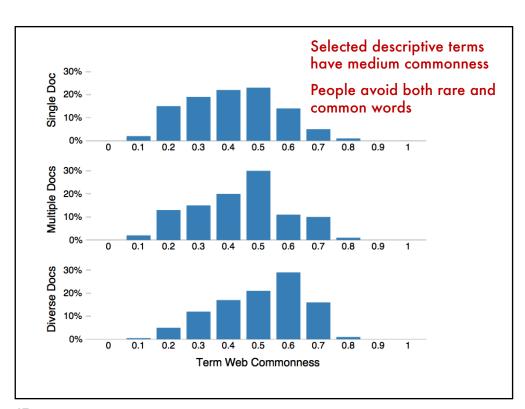


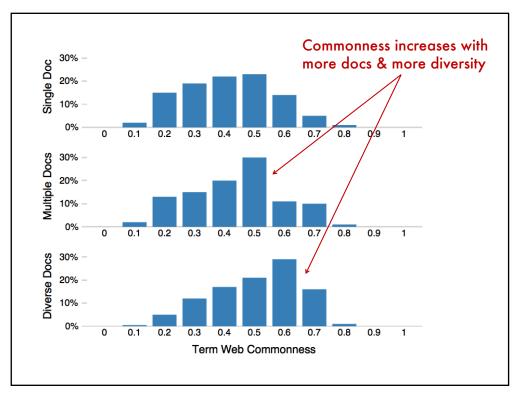
Term Commonness

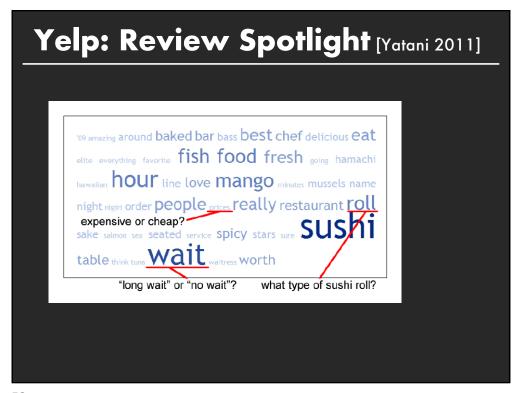
 $log(tf_w) / log(tf_{the})$

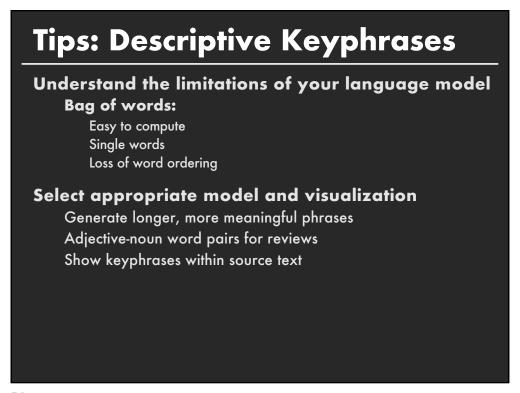
The normalized term frequency relative to the most frequent n-gram, e.g., the word "the".

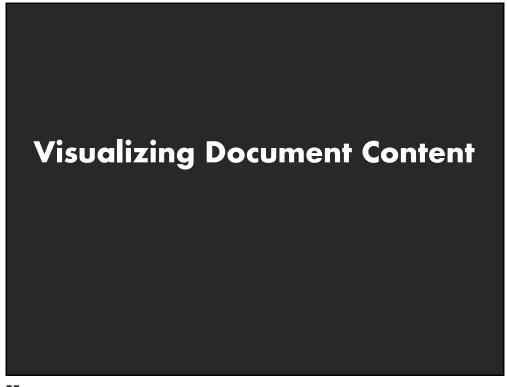
46

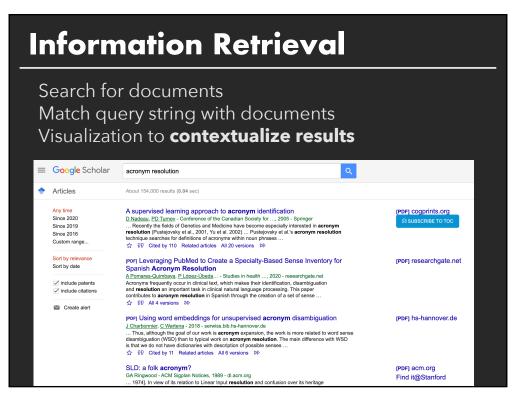


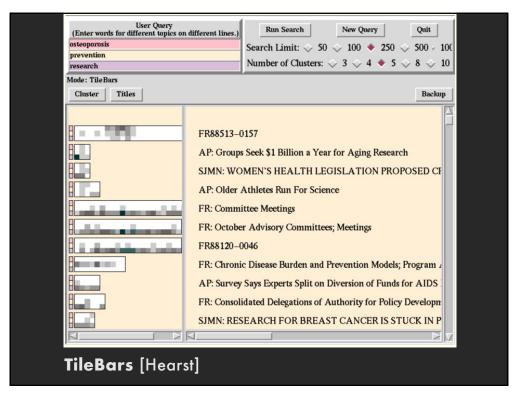


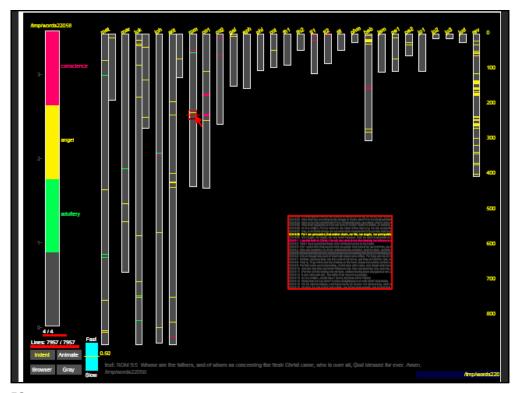


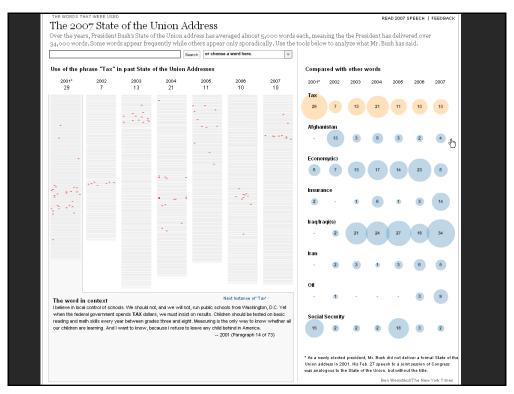


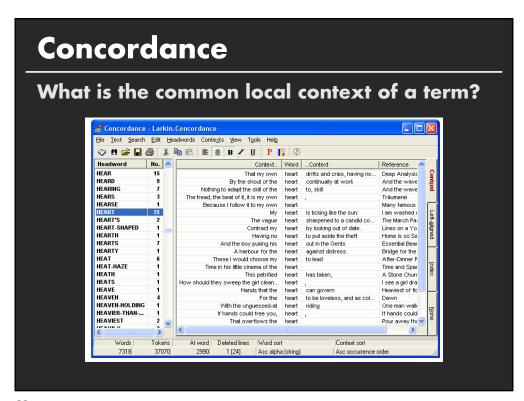












```
if love be rough with you , be rough with love .

if love be blind , love cannot hit the mark .

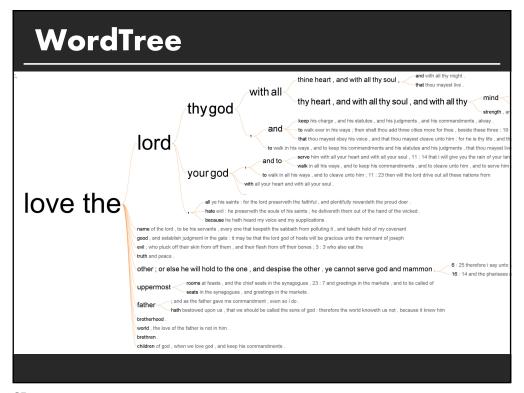
if love be blind , it best agrees with night .

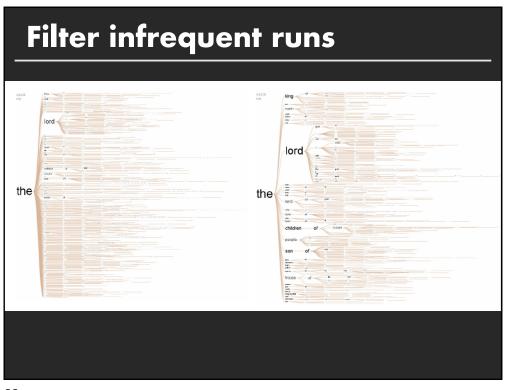
rough with you , be rough with love .

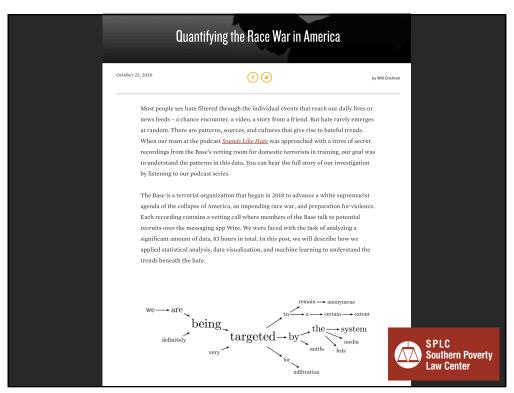
love cannot hit the mark .

blind ,

it best agrees with night .
```







Glimpses of structure

Concordances show local, repeated structure But what about other types of patterns?

For example

Lexical: <A> at

Syntactic: <Noun> <Verb> <Object>

70

Phrase Nets [van Ham 2009]

Look for specific linking patterns in the text:

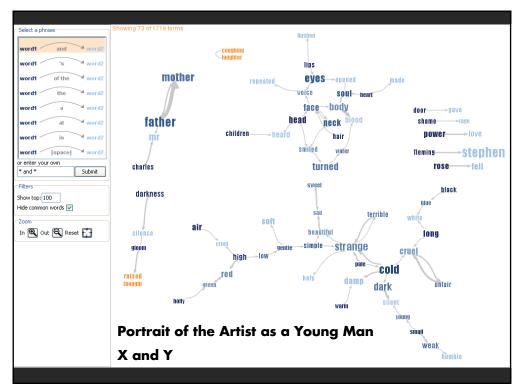
'A and B', 'A at B', 'A of B', etc Could be output of regexp or parser

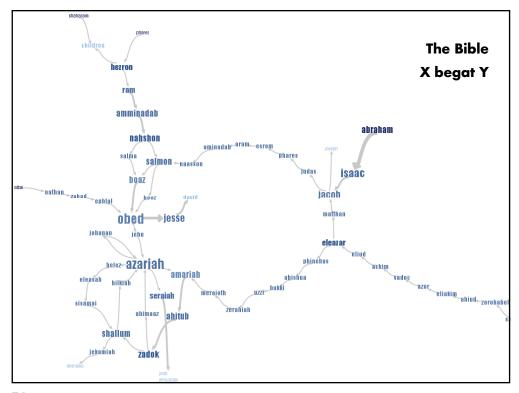
Visualize extracted patterns in a node-link view

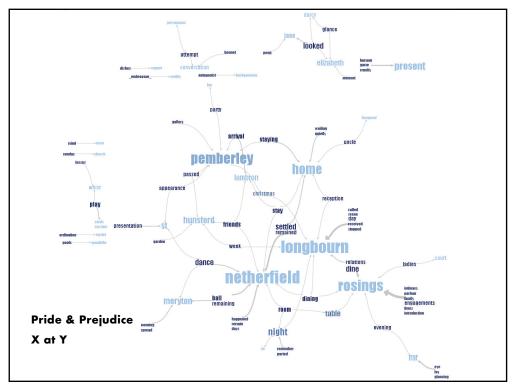
Occurrences -> Node size

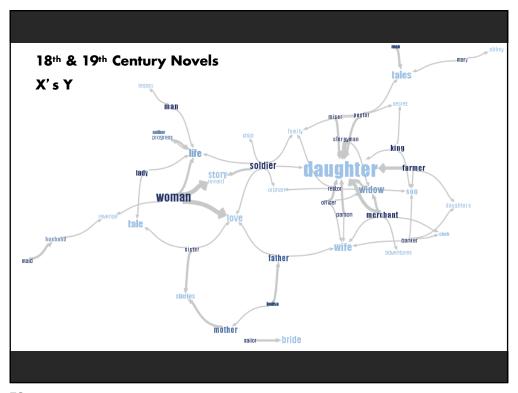
Pattern position → Edge direction

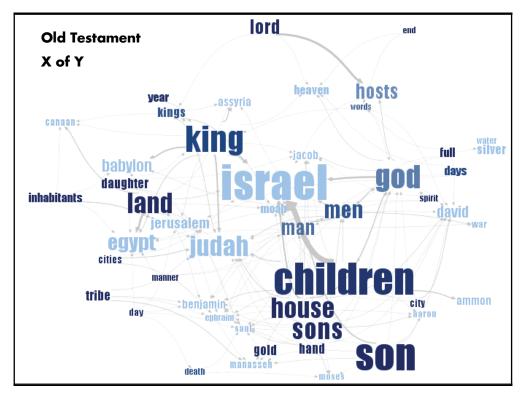
Darker color → higher ratio of out-edges to in-edges

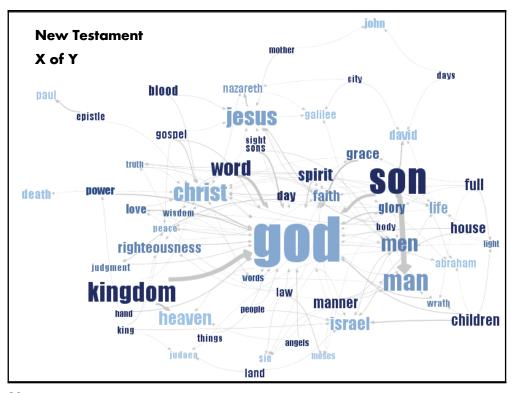












Visualizing Conversation

91

Visualizing Conversation

Many dimensions to consider:

Who (senders, receivers)

What (the content of communication)

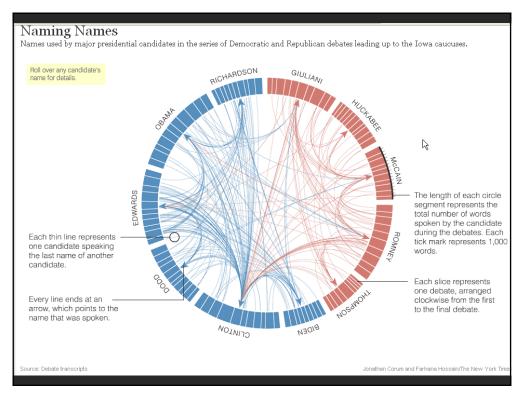
When (temporal patterns)

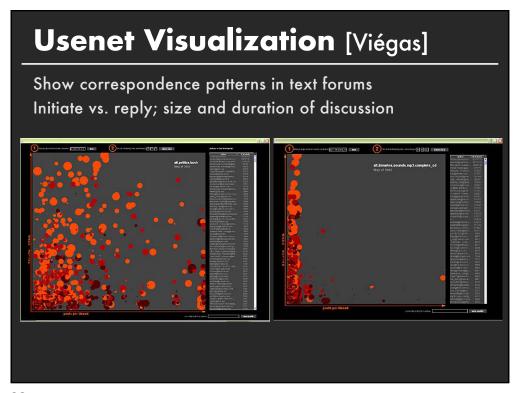
Interesting cross-products:

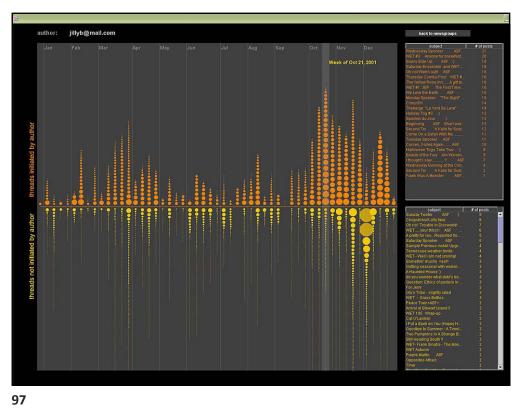
What x When → Topic "Zeitgeist"

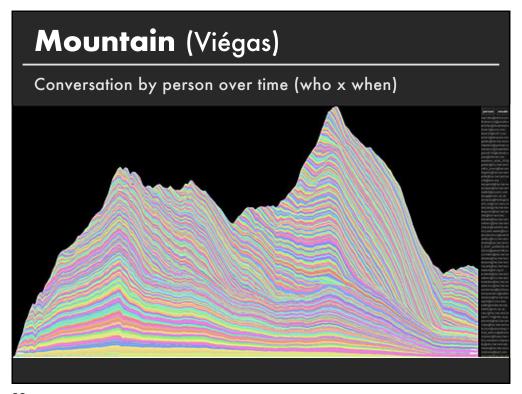
Who x Who → Social network

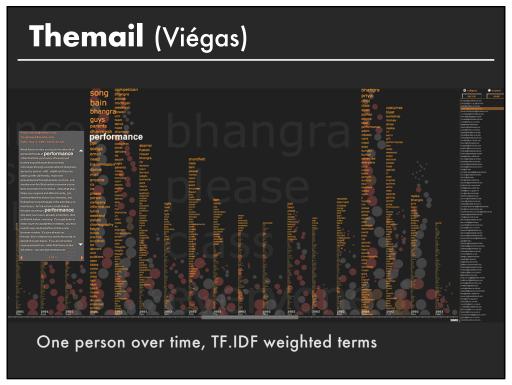
Who x Who x What x When \rightarrow Information flow

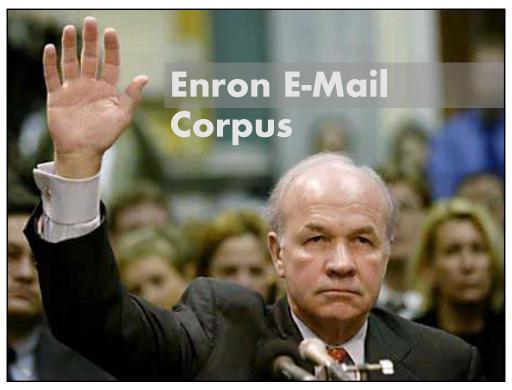


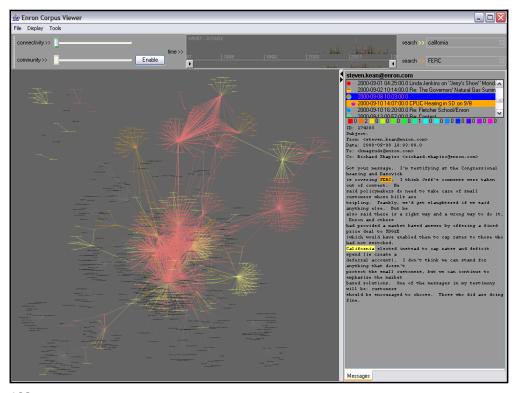


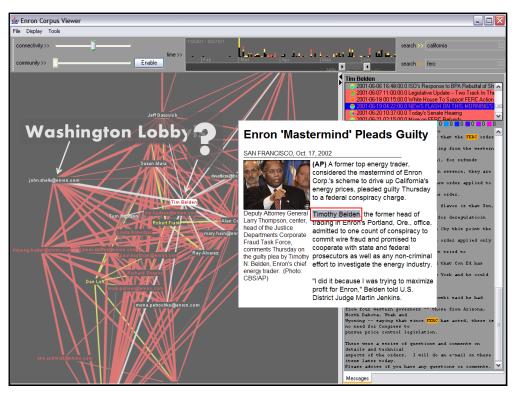












Named Entity Recognition

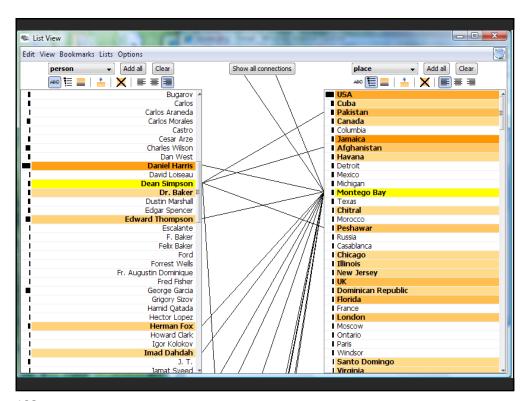
Identify and classify named entities in text:

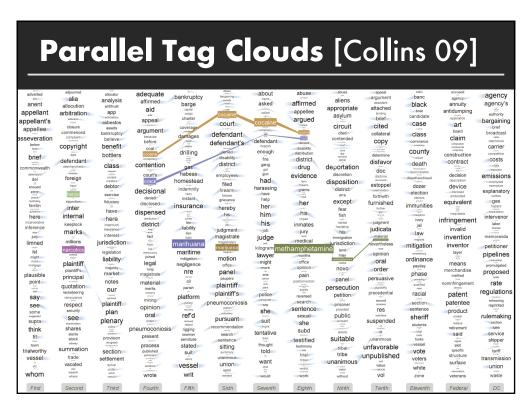
John Smith → PERSON
Soviet Union → COUNTRY
353 Serra St → ADDRESS
(555) 721-4312 → PHONE NUMBER

Entity relations: how do the entities relate?

Simple approach: do they co-occur in small window of text?

107

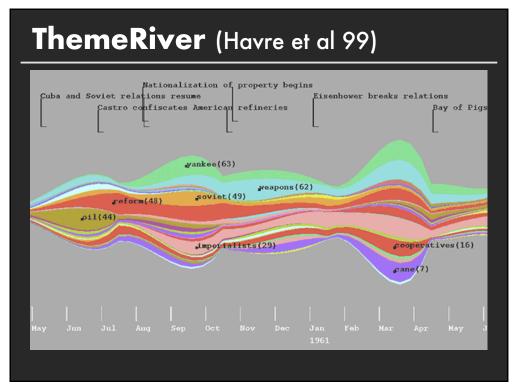


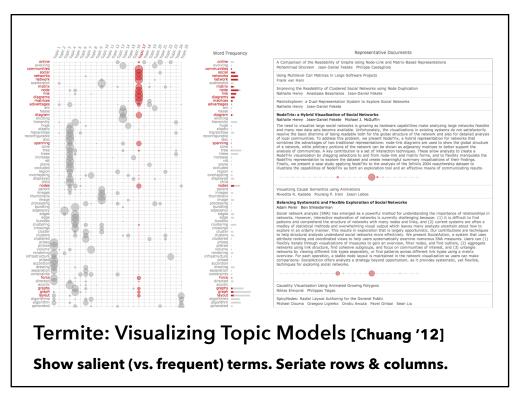


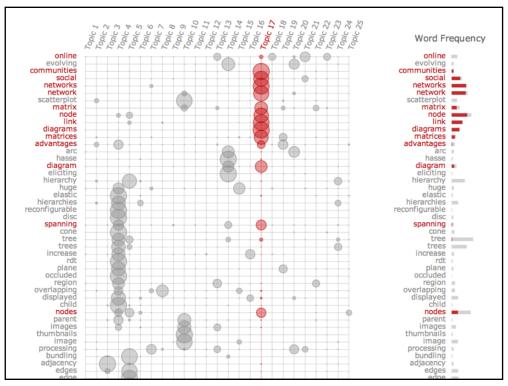
Topic modeling

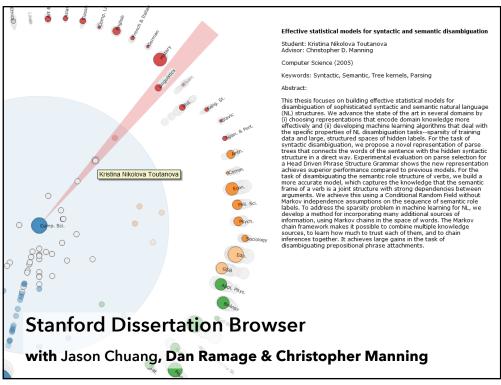
Topic modeling approaches

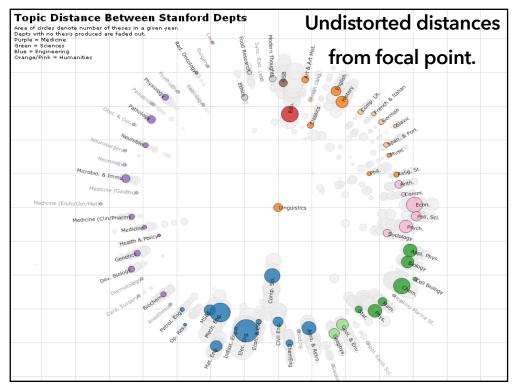
Assume documents are a mixture of topics
Topics are (roughly) a set of co-occurring terms
Latent Semantic Analysis (LSA): reduce term matrix
Latent Dirichlet Allocation (LDA): statistical model

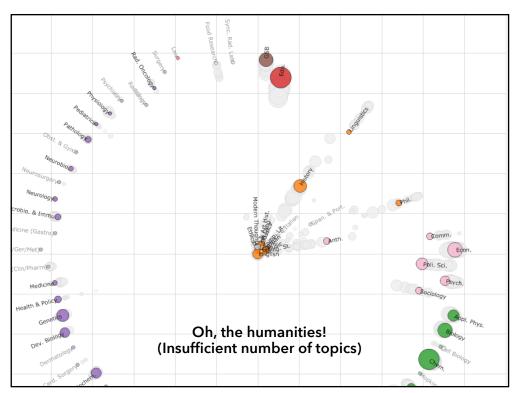












Summary

High Dimensionality

Where possible use text to represent text... ... which terms are the most descriptive?

Context & Semantics

Provide relevant context to aid understanding. Show (or provide access to) the source text.

Modeling Abstraction

Understand abstraction of your language models.

Match analysis task with appropriate tools & models.

Currently: from bag-of-words to vector space embeddings